Installation, Operation and Maintenance Manual VCIOM-02377-EN Rev. 0 May 2022

Keystone OM11 - EPI2 DeviceNet Interface

This page is intentionally left blank

Table of Contents

Section 2: Oper	Operation and Storage ation and Storage
Section 3:	Distinguish Old/New Models
Distir	nguish Old/New Models
Section 4:	Installation
4.1	Assembling Procedure for Models 63-125 Nm
	Old Version (US or Non-US Market)
4.2	Assembling Procedure for Models 250-500-1000-2000 Nm Old Version (US or Non-US Market)
Section 5:	Communication Features
Com	munication Features
Section 6:	DeviceNet Interface Module
6.1	On Board Indication Module
6.2	Wiring Diagram
6.3	Bus/Hardwired Mode Selection
Section 7:	Brief DeviceNet Description
7.1	Network Cable
7.2	Terminator
Section 8:	Communication Interface
8.1	Actuator Commands
8.2	Actuator Status and Indication
83	8.2.1 Positioning Algorithm
8.5	Dead Band Configuration
8.5	User Defined Data
	Configuration Data
8.6	
8.6 8.7	DeviceNet Configurable Parameters

Section 9: Local Settings

9.1	On-Board Interface	25
9.2	DeviceNet MACID Configuration	
9.3	DeviceNet Communication Speed Configuration	
Section 10 Bluet	: Bluetooth Communication Module	
Section 11	: DeviceNet Certificate	
Devic	eNet Certificate	

Section 12: Optional Kits

Optional Kits	0	
---------------	---	--

NOTE:

Before installation, these instructions must be fully read and understood.

Section 1: Introduction

The OM11 DeviceNet interface is an electronic module that allows you to connect the Keystone EPI2 electrical actuator to a DeviceNet network. The module has its own microprocessor and acts as a pure bus interface without affecting the actuator control integrity. It is installed inside the actuator housing and takes the electrical power from the actuator power supply module. The DeviceNet network is fully isolated from the actuator electronics.

For details about EPI2 actuator, please refer to Installation, Operation and Maintenance Manual for Keystone EPI2, Electric Actuator.

EPI2 actuators must be electrically isolated before any disassembling or reassembling operations. Before any disassembling or reassembling operations, please follow in detail the relevant section of the basic installation and operating manual (latest revision available).

The electronic parts of the EPI2 actuators and all option modules can be damaged by a discharge of static electricity. Before you start, touch a grounded metal surface to discharge any static electricity.

A WARNING

It is assumed that the installation, configuration, commissioning, maintenance and repair works are carried out by qualified personnel and checked by responsible specialists.

A WARNING

Repair work, other than operations outlined in this manual, is strictly reserved to qualified Emerson personnel or to personnel authorized by the company itself.

Section 2: Operation and Storage

The module is designed to work and to be stored in the same environment as the actuator.

Section 3: Distinguish Old/New Models

It is important to distinguish between EPI2 old models and the new ones. To install the board on base actuator, in fact, it is necessary to choose the correct mechanical parts from the kit.

Furthermore, the meaning of some data exchanged on the DeviceNet interface depends on model (old or new); differences will be explained in the following sections.

Figures 1 and 2 allow to distinguish old version of EPI2 from the new version (on the labels, the digits of Product Number are boxed); furthermore, the logic boards with heatsink identifies old version models, while logic boards without heatsink identifies new version models.

Figure 1 Label for non-US market - digits X7X8 on product coding chart

orque (Nm) 2000	BPU2K0HVPF002UC	SIN	144353T006001 Yes
csSupply 100-240	VDC/VAC-1ph		Tamb -25°C
ULATING S4-50% 1	200 s/h		
KEMA 10637.01	+ NEMA 4,4X & 6 k	EMA 1	10637.02
Manufacturer: B	FFI ITALIA Fiorenzuola	d'Arda	I-29017 (PC) - ITALY
	DO NOT OPEN WHEN I	ENERGI	ZED

Figure 2 Label for US market – digit 6 on product coding chart

Torque (Lbs-in) 600	E006 AHW 5000	S/N	144345T0010
secs Supply 100-240	VDC/VAC-1ph		Tamb
MODULATING S4-50% 12	200 s/h	1	NEMA 4,4X & 6
2.2 - Nº 139 Class 322	1-02 & 3221-82	Certificate n	° 1832436
Manufacturer: Bl	FFI ITALIA Fioren	zuola d'Arda l	-29017 (PC) - Г
	DO NOT OPEN	WHEN ENERGIZ	ED

Section 4: Installation

To assemble the OM11 into the EPI2 actuator, proceed as follows:

- Ensure that all the parts received with the OM11 are available, as described in Section 12, Optional Kits.
- Using Section 12, Optional Kits, select only mechanical parts (screws and spacers) depending on actuator models.
- Gather the right tools for the assembly and for setting the actuator controls.
- With an Allen wrench of 5 mm, unscrew the cover screws, see Figure 5.

Figure 5

Remove the actuator cover, see Figure 6.

Follow one of the following assembling procedures depending on actuator model.

4.1 Assembling Procedure for Models 63-125 Nm Old Version (US or Non-US Market)

• Detect the black cable required for the OM11 which is already included in the basic actuator, see Figure 7.

Figure 7

• Connect the flat cable furnished into the kit to connector J3 on OM11, see Figure 8.

Installation

• Unscrew the 3 screws, see Figure 9: 3 pcs M3x10.

• Tighten the 3 metal spacers, see Figure 10.

• Connect the OM11 flat cable to connector J8 on the logic board, see Figure 11.

Figure 11

• Place the OM11 card onto the spacer and tighten the 4 screws, see Figure 12.

• Connect the 8-pin connector to connector J3 on OM11, see Figure 13.

4.2 Assembling Procedure for Models 250-500-1000-2000 Nm Old Version (US or Non-US Market)

• Detect the black cable required for the OM11 which is already included in the basic actuator; disassemble local mechanical indicator, see Figure 14.

Figure 14

• Connect the flat cable furnished into the kit to connector J3 on OM11, see Figure 15.

• Connect the OM11 flat cable to the connector on the logic board, see Figure 16.

Figure 16

• Place the OM11 card onto the heatsink spacers and tighten the 4 screws; assemble local mechanical indicator, see Figure 17.

• Connect the 8-pin connector to connector on OM11, see Figure 18.

Figure 18

Section 5: Communication Features

Communication protocol CAN bus standard, 5 wires DeviceNet applic				
Network topology	Line/Trunk-drop topology			
Transmission medium	Specific cable for DeviceNet network: 1 twisted pair for power, 1 twisted pair for data and shield			
Data rate	125 250 500 Kbps			
Cable length	500 250 100 m (length may also vary with cable thickness)			
Device number	64 devices per segment			
Bus access	Producer-consumer network			
Bus termination	External bus terminators required			
Keystone Implementation				
Device type	Generic (00 hex)			
Group	Group 2 only slave			
Physical layer	Isolated node with transceiver powered by the network			
Current consumption	Current drawn from the network to power the transceiver: 29 mA at 24 V; 27 mA at 17 V; 25 mA at 11 V			
Communication	Predefined master/slave connection: explicit message and polled I/O			
Baud rate	125 Kbps, 250 Kbps, 500 Kbps (default 125 Kbps). Network configurable or manual configurable via on-board rotary BCD switch			
Addressing (MACID)	0-63 (default 63). Network configurable or manual configurable via on-board rotary BCD switches			
Temperature	-40 °C, +85 °C			
EMC protections	EN 50081-2 and EN 50082-2			

Section 6: DeviceNet Interface Module

The module consists in a single PCB that is installed inside the actuator housing. It is connected to the EPI2 base card via flat cable. The internal wiring connects the DeviceNet data lines to the actuator terminal board.

6.1 On-Board Indication Module

The DeviceNet interface is equipped with 5 LEDs, pushbuttons and BCD rotary switches to offer a configuration and diagnostic interface on-board.

Mod_Stat

• Module Status LED as defined in spec. Vol. 3, "DeviceNet Adaptation for CIP", Section 7

Table 1.

Condition	LED	Description
No power	Off	There is no power applied to the device.
Operational	Green	The device is operating in a normal condition.
Standby	Flashing green	The factory commissioning is not finished; serial number not yet assigned.
Minor fault	Flashing red	Recoverable fault due to a non-critical diagnostic indication
Unrecoverable fault	Red	 Device has an unrecoverable fault: HW alarm Power failure alarm Position sensor alarm High temperature alarm

Net_Stat

• Network Status LED as defined in spec. Vol. 3, "DeviceNet Adaptation for CIP", Section 7

Table 2.

Condition	LED	Description
Not powered/not on-line	Off	Device is not on-line
On-line, not connected	Flashing green	Device is on-line, but is not allocated to a Master
Link OK on-line connected	Green	Device is on-line and is not allocated to a Master
Connection time-out	Flashing red	One or more I/O connection are in timed-out state
Critical link failure	Red	Failed communication device. The device has detected an error that has rendered it incapable of communicating on the network (Duplicate MACID or Bus-Off).
Communication faulted and received an identify comm fault request-long protocol	Flashing red and green	A specific communication faulted device. The device has detected a Network Access error and is in the Communication Faulted state. The device has subsequently received and accepted an Identify Communication Faulted Request-Long Protocol message.

Reset

Reset pushbutton

Local Configuration

 On-board interface for local configuration of MACID and Baud Rate. By default, the board is set to accept MACID and Baud Rate from the network, but it is also possible to set these parameters by hardware setting. Detailed procedures are given in Section 9, Local Settings.

6.2 Wiring Diagram

The DeviceNet interface is connected to the actuator terminal board by internal wiring, see Figure 20.

Figure 20

6.3 Bus/Hardwired Mode Selection

The DeviceNet interface manages the bus/hardwired mode selection by means of the input terminal indicated with HW MODE. The physical input accepts from 24 V - 125 V DC or AC, polarity insensitive. When the input is left unconnected or no voltage is applied, the actuator is under bus control from which is possible to send commands and read status. When an appropriate voltage is applied to the HW MODE input, the actuator turns under Hardwired control. In this condition, the bus can only read actuator status while the actuator follows the hardwired open and close controls connected to the terminal board. For further details, please refer to Installation, Operation and Maintenance Manual for Keystone EPI2, Electric Actuator.

Section 7: Brief DeviceNet Description

DeviceNet is a low-level network that provides connection between industrial field devices (sensors and actuators) and higher-level devices (controllers). DeviceNet uses CAN (Controller Area Network) for its datalink layer, and CIP (Common Industrial Protocol) for the upper layers of the network. The major physical and media characteristics of the DeviceNet are:

- Trunk-line/drop-line topology of the network
- Support for up to 64 devices in a network (i.e., 1 master and 63 EPI2 actuators)
- Node removal without altering the network behavior
- Support of both network-powered and self-powered devices on the same network
- Wiring error protection
- Selectable data rate of 125 k baud, 250 k baud and 500 k baud

Table 3.

•

Data rate	Trunk distance	Drop length			
		Maximum	Cumulative		
125 k baud	500 meters	6 meters	156 meters		
250 k baud	250 meters	6 meters	78 meters		
500 k baud	100 meters	6 meters	39 meters		

- Adjustable power configuration to meet individual application needs
- High current capability (up to 8 A at 24 V DC)
- Operation with off-the-shelf power supplies
- Available power taps that allow the connection of several power suppliers
- Built-in overload protection
- Controller Area Network (CAN) technology for Media Access Control and Physical Signalling

7.1 Network Cable

To obtain the expected performances from the communication network, the suitable cable must be utilized. DeviceNet requires a specific cable composed of a Power pair, a Data Pair and a shield with drain wire. DeviceNet defines different cables to be used in the different parts of the network.

- in the trunk line, thick cable is normally used, e.g., BELDEN 3082A
 - 1 pair 15 AWG 19x28 Tinned Copper Power pair
 - 1 pair 18 AWG 19x30 Tinned Copper Data pair
 - inner shield 100% coverage
- in the drop line, thick cable is normally used, e.g., BELDEN 3084A
 - 1 pair 22 AWG 19x34 Tinned Copper Power pair
 - 1 pair 24 AWG 19x36 Tinned Copper Data pair
 - inner shield 100% coverage

Figure 21

7.2 Terminator

The DeviceNet network must be terminated to each end of the main trunk line with a 120 ohm resistor across CAN_H and CAN_L data line.

Figure 22

Section 8: Communication Interface

This section describes the input and output data available at the DeviceNet interface. In all cases, a parameter is called "input signal" when data is sent from actuator to bus, vice-versa, it is called "output signal" when data is sent from bus to slave.

8.1 Actuator Commands

The commands are received from the DeviceNet network and are forwarded to the base card via the internal data bus.

Table 3.Output assembly instance: Class 4; Instance 101; Attribute 3

Byte	b7	b 6	b5	b4	b3	b2	b1	b 0	
0	Reserved	Reserved	Reserved	Reserved	Positioner enable	Stop command	Close command	Open	
1	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	
2	LSB Set point								
3	MSB Set point								

Table 4.

Indication	Description	Data type	Range	E.U.
Open command	When this bit is set to 1, an Open Command is issued to the actuator. The open command is maintained during the whole movement from the start of the bus command until the Open Limit has been reached. The open command is reset when a STOP Command is received from the bus.	Boolean	0-1	-
Close command	When this bit is set to 1, a Close Command is issued to the actuator. The close command is maintained during the whole movement from the start of the bus command until the Close Limit has been reached. The close command is reset when a Stop Command is received from the bus.	Boolean	0-1	-
Stop command	When this bit is set to 1, a Stop Command is issued to the actuator. A Stop Command received from the bus resets both open and close commands.	Boolean	0-1	-
Positioner enable	When this bit is set to 1, the on-board positioner is enabled. The positioner is enabled until this bit is set to 0.	Boolean	0-1	-
Set point	The Setpoint received from the bus is used to produce the open or close commands to the actuator as defined in Section 8.2.1, Positioning Algorithm.	Integer	0-1000	0.1%

8.2 Actuator Status and Indication

The status is received from the base card via the internal data bus and is reported to the DeviceNet network.

Byte	b7	b6	b5	b4	b3	b2	b1	Ь0	
0	Positioner active	Intermediate position	Motor stopped	Fully close	Actuator moving	Closing	Opening	Fully open	
1	Monitor relay	Reserved	PDA active	HW Mode active	LOCAL selected	General ALARM	Not oper close	Not oper open	
2	HW alarm	Mid travel alarm	Motor dir. alarm	Opt. loc. cnt. alarm	Strk. limit alarm	Torque CL alarm	Torque OP alarm	Pwr fail alarm	
3	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	High temp alarm	Pos. Sen. alarm	
4				LSB Curre	nt position				
5				MSB Curre	nt position				
6				Current	t torque				
7		Current temperature							

Table 5.Input assembly instance: Class 4; Instance 100; Attribute 3

Table 6.

Indication	Description	Data type	Range	E.U.
Fully open	The Fully Open indication is set to 1 when the actuator is at Fully Open position. This indication reflects the status of the open limit on the actuator.	Boolean	0-1	-
Opening	The Opening indication is set to 1 when the actuator is moving toward opening direction.	Boolean	0-1	-
Closing	The Closing indication is set to 1 when the actuator is moving toward closing direction.	Boolean	0-1	-
Actuator moving	This indication is set to 1 when the actuator is moving either in opening or in closing direction.	Boolean	0-1	-
Fully close	The Fully Close indication is set to 1 when the actuator is at Fully Close position. This indication reflects the status of the close limit on the actuator.	Boolean	0-1	-
Motor stopped	This indication is set to 1 when the actuator is not moving and the motor has stopped.	Boolean	0-1	-
Intermediate position	This indication is set to 1 when the valve is at an intermediate position.	Boolean	0-1	-
Positioner active	This indication is set to 1 when the on-board positioner is enabled.	Boolean	0-1	-
Alarm in open direction	Open command not available due to current alarm trip in open direction. The diagnostic indication is cleared when the alarm that has generated the fault disappears.	Boolean	0-1	-
Alarm in close direction	Close command not available due to current alarm trip in close direction. The diagnostic indication is cleared when the alarm that has generated the fault disappears.	Boolean	0-1	-
General alarm	Bus can only read data due to alarm present. The diagnostic indication is cleared when all the alarm conditions are cleared.	Boolean	0-1	-
LOCAL selected	No operation from bus because LOCAL selector switch is activated. The diagnostic indication is cleared when the selector is turned to REMOTE.	Boolean	0-1	-
Hardwired mode selected	No operation from bus because HARDWIRED mode is activated. The diagnostic indication is cleared when the input HW MODE is not powered.	Boolean	0-1	-
PDA Active	No operation from bus because PDA operator interface has the control (only if Bluetooth option is available). The diagnostic indication is cleared when the PDA control is released.	Boolean	0-1	-

Indication	Description	Data type	Range	E.U.
Monitor relay	This indication is set to 1 when the actuator is available for bus control. Monitor Relay indication means that the local selector is at Remote position, no other remote interfaces have the control (Hardwired or PDA) and no alarms are present.	Boolean	0-1	-
Power failure alarm	This bit is set when the main power supply is not in the proper range. The diagnostic indication is cleared at the next power-up if the power supply is corrected.	Boolean	0-1	-
Torque alarm in opening	This bit is set when the Torque has reached the programmed limit while the actuator was moving in opening direction. The diagnostic indication is cleared by a Close command.	Boolean	0-1	-
Torque alarm in closing	This bit is set when the Torque has reached the programmed limit while the actuator was moving in closing direction. The diagnostic indication is cleared by an Open command.	Boolean	0-1	-
Stroke limit alarm	This bit is set when the current position is behind the Open or Close limit switches or as a result of an incorrect Torque Set. The diagnostic indication is cleared when the position returns within the limits or after a successful Torque Set procedure.	Boolean	0-1	-
Local control alarm	This bit is set when the optional Local Control Module does not work correctly. The diagnostic indication is cleared when the Local Control works without problems.	Boolean	0-1	-
Motor direction alarm	This bit is set when the motor drive has recognized an incorrect behavior. The diagnostic indication is cleared by a command in the opposite direction.	Boolean	0-1	-
Jammed valve	This bit is set when the actuator detects a jammed valve condition. The diagnostic indication is cleared by any new command.	Boolean	0-1	-
HW alarm	This bit is set when the actuator detects a general hardware error. The diagnostic indication is cleared at the next power-up under normal condition.	Boolean	0-1	-
Position sensor alarm	This bit is set when the actuator detects that position sensor is not working properly.	Boolean	0-1	-
High temperature alarm	This bit is set when the internal temperature is out of the operational limits. The diagnostic indication is cleared when the internal temperature is within the limits.	Boolean	0-1	-
Current position	The current position read from base card	Integer	0-1000	0.1%
Current torque	The current torque read from base card	Integer	0-100	%
Internal temperature	The current internal temperature	Integer	-45 +85	°C

8.2.1 Positioning Algorithm

A positioning algorithm (position closed loop control) is implemented on the DeviceNet interface module. The positioning function consists of comparing the position received from the base card with the position request received from bus. If the difference between "position request and present position" is greater than "Dead Band", an Open or a Close command is sent to base card. The dead band is configurable via bus from 0.3 to 2.0%.

8.3 Fail-Safe Data

The fail-safe data parameter defines the behavior of the actuator in case of network communication failure. The fail-safe data parameter can be modified via DeviceNet network.

Table 7.Parameter 1: Class 100; Instance 1; Attribute 100

Indication	Description	Direction	Data type	Range	Default	E.U.
Safety action	The action to execute in case of loss of bus communication. 0 = No action 1 = Close 2 = Open 3 = Stop 4 = Go to predefined position	R/W	Integer	0-4	0	-

Table 8.Parameter 2: Class 100; Instance 1; Attribute 101

Indication	Description	Direction	Data type	Range	Default	E.U.
Predef. safety position	Safe predefined position	R/W	Integer	0-100	50	%

Table 9.Parameter 3: Class 100; Instance 1; Attribute 102

Indication	Description	Direction	Data type	Range	Default	E.U.
Delay on bus fail	Delay before to initiate the safety action	R/W	Integer	0-10	4	seconds

8.4 Dead Band Configuration

The Dead Band indicates the maximum allowed deviation from the valve position and the requested position. If the deviation is bigger, an open or close control command will be generated.

Indication	Description	Direction	Data type	Range	Default	E.U.
Dead band	This parameter defines the Dead Band of the positioning function available on the modulating actuator (in tenth of %). The movement is inhibited until the difference between current position and requested position (position error) is lower than Dead Band.	R/W	Integer	3-20	15	0.1%

Table 10.Parameter 4: Class 100; Instance 1; Attribute 103

8.5 User Defined Data

The user defined data is stored in the EPI2 actuator and is available on the DeviceNet network for Asset Management information.

Table 11.Parameter 5: Class 100; Instance 1; Attribute 104

Indication	Description	Direction	Data type	Range	Default	E.U.
Actuator serial number	Actuator serial number	Read only	Short string	12 bytes	-	-

Table 12.Parameter 6: Class 100; Instance 1; Attribute 105

l	ndication	Description	Direction	Data type	Range	Default	E.U.
A	ctuator type	Actuator type	Read only	Short string	12 bytes	-	-

Table 13.Parameter 7: Class 100; Instance 1; Attribute 106

Indication	Description	Direction	Data type	Range	Default	E.U.
Valve tag	Valve tag	Read only	Short string	12 bytes	-	-

8.6 **Configuration Data**

The Configuration data is received from the base card via the internal data bus and is reported to the DeviceNet network. The Configuration data can also be modified via the DeviceNet network and the interface will send the new values to the logic board.

Table 14.Parameter 8: Class 100; Instance 1; Attribute 112

Indication	Description	Direction	Data type	Range	Default	E.U.
Close direction	The direction the actuator drives the motor when it receives a close command. 0 = Clockwise (CW) 1 = Counterclockwise (CCW)	R/W	Integer	0-1	1	-

Table 15.Parameter 9: Class 100; Instance 1; Attribute 113

Indication	Description	Direction	Data type	Range	Default	E.U.
Opening speed set	It defines the speed of the motor when opening.	R/W	Integer	0-9	6	-

Table 16.Parameter 10: Class 100; Instance 1; Attribute 114

Indication	Description	Direction	Data type	Range	Default	E.U.
Closing speed set	It defines the speed of the motor when closing.	R/W	Integer	0-9	6	-

Table 17.Parameter 11: Class 100; Instance 1; Attribute 115

Indication	Description	Direction	Data type	Range	Default	E.U.
Opening torque set	Opening torque	R/W	Integer	0-9	9	-

Table 18.Parameter 12: Class 100; Instance 1; Attribute 116

Indication	Description	Direction	Data type	Range	Default	E.U.
Closing torque set	Closing torque	R/W	Integer	0-9	9	-

Table 19.Parameter 13: Class 100; Instance 1; Attribute 117

Indication	Description	Direction	Data type	Range	Default	E.U.
Open limit	It defines the end of travel setting in Open direction: 0 = open limit by torque 1 = open limit by position	R/W	Integer	0-1	1	-

Table 20.Parameter 14: Class 100; Instance 1; Attribute 118

Indication	Description	Direction	Data type	Range	Default	E.U.
Close limit	It defines the end of travel setting in Close direction: 0 = close limit by torque 1 = close limit by position	R/W	Integer	0-1	1	-

Table 21.Parameter 15: Class 100; Instance 1; Attribute 119

Indication	Description	Direction	Data type	Range	Default	E.U.
Nominal torque	Nominal torque of the motor: 0 = 63 Nm 1 = 125 Nm 2 = 250 Nm 3 = 500 Nm 4 = 1000 Nm 5 = 2000 Nm	Read only	Integer	0-5	-	-

Table 22.Parameter 16: Class 100; Instance 1; Attribute 120

Indication	Description	Direction	Data type	Range	Default	E.U.
LED color code	It defines the color of the LED indicating the Fully Open and Fully Close position: 0: Open: LED=green; Close: LED=red 1: Open: LED= red; Close: LED= green	R/W	Integer	0-1	0	-

8.7 DeviceNet Configurable Parameters

For correct communication and identification of the actuator, it is required to configure the correct MACID and Baud Rate.

Table 23. Parameter 17: Class 3; Instance 1; Attribute 1

Indication	Description	Direction	Data type	Range	Default	E.U.
MACID	The MACID to assign to the device	R/W	Unsigned	0-63	63	-

Table 24.Parameter 18: Class 3; Instance 1; Attribute 2

Indication	Description	Direction	Data type	Range	Default	E.U.
Baud rate	The Baud Rate to assign to the device	R/W	Unsigned	0-2	0	-

8.8 EDS File

The DeviceNet interface module is provided with an Electronic Data Sheet (EDS) file. The EDS file is DeviceNet specific and provides information about the device configuration data. The EDS file is used by the DeviceNet configuration tool in order to get all the information necessary to the device configuration and to access and alter the configurable parameters of the EPI2 actuator.

When the DeviceNet Interface tries to set opening/closing speeds, actuator logic sets values in function of Table 25.

Table 25.

Opening/Closing speed sent from DeviceNet interface	Opening/Closing speed set into actuator logic
0	4
1	4
2	4
3	4
4	4
5	6
6 (default)	6 (default)
7	6
8	8
9	8

NOTE:

New version of EPI2 has only the opening/closing torque 2, 5 and 9, (see Installation, Operation and Maintenance Manual for Keystone EPI2, Electric Actuator).

When the DeviceNet Interface tries to set opening/closing torque, actuator logic sets values in function of Table 26.

Table 26.

Opening/Closing speed sent from DeviceNet interface	Opening/Closing speed set into actuator logic
0	4
1	4
2	4
3	4
4	4
5	6
6	6
7	6
8	8
9 (default)	9 (default)

NOTE:

Input data Torque has a different meaning in function of old and new EPI2 models. In particular, in old EPI2 models, it is the current Torque value; in new models, it is the set Torque value.

Section 9: Local Settings

The DeviceNet interface module is equipped with 3 on-board selector switches to allow the operator configuration of both the MACID and the Baud Rate of DeviceNet communication. To access the on-board interface on the DeviceNet interface module, it is necessary to follow the procedures explained in Installation, Operation and Maintenance Manual for Keystone EPI2, Electric Actuator, Section 6, Actuator Settings and Configuration, and then follow the procedures described in the next sections.

On-Board Interface 9.1

The on-board interface is equipped with the following switches and indications.

9.2 DeviceNet MACID Configuration

The DeviceNet interface module allows MACID setting both for manual configuration as for software configuration by means of two ten-position BCD rotary switches as indicated in Figure 24.

The current setting is read in decimal representation:

MSB_ADD specifies the ten (1x, 2x, 3x, ...); LSB_ADD specifies the unit (x1, x2, x3, ...).

Manual Configuration

• When BCD rotary switches specify a valid DeviceNet MACID, i.e., a value from 00 - 63, the module considers this value as the device MACID.

Software configuration

• If the switches specify an invalid DeviceNet MACID, i.e., a value greater than 63, the module uses the value stored in non-volatile memory and is ready for software configuration of MACID via specific communication message.

Configuration procedure

To change the current value of the BCD rotary switches to set a different MACID, the user shall follow this procedure.

- Move the dip switch ENA_CFG to the ON position: the ON_CFG LED is activated to indicate that the actuator has entered Configuration Mode.
- Set the new MACID via the rotary switches MSB_ADD and LSB_ADD. E.g.: to set MACID = 28:
 - MSB_ADD on position 2
 - LSB_ADD on position 8
- Press the pushbutton ENTER to confirm the new set; if the new MACID is correct, the CFG_OK LED turns ON.
- Move the dip switch ENA_CFG on the OFF position to exit from Configuration Mode; the DeviceNet interface module is reset to activate the new configuration.

Figure 24 MACID configuration

9.3 DeviceNet Communication Speed Configuration

The DeviceNet interface module also allows Date Rate setting via manual configuration (or software configuration) by means of one ten-position BCD rotary switch DATA_RATE as indicated in Figure 25.

Manual configuration

- When BCD rotary switch specifies one of the following valid DeviceNet Data Rate, the module will work at the selected data rate.
 - 0: 125 Kbps
 - 1: 250 Kbps
 - 2: 500 Kbps

Software configuration

 If the switches specify any other invalid DeviceNet Data Rate, i.e., a value from 4 - 9, the module uses the value stored in non-volatile memory and is ready for software configuration of Data Rate via a specific communication message.

Configuration procedure

To change the current value of the BCD rotary switch to set a different Data Rate, the user shall follow this procedure.

- Move the dip switch ENA_CFG on the ON position: the ON_CFG LED turns ON to indicate that the actuator is entered in Configuration Mode.
- Set the new Data Rate on the rotary switches DATA_.
- Press the pushbutton ENTER to confirm the new set; if the new MACID is correct, the CFG_OK LED turns ON.
- Move the dip switch ENA_CFG on the OFF position to exit from Configuration Mode; the DeviceNet interface module is reset to activate the new setting.

Figure 25 Communication speed configuration

Section 10: Bluetooth Communication Module

The OM11 module is provided with integrated Bluetooth module. In www.biffi.it, you can download AManager program to modify each settings by integrated Bluetooth module. After installation of AManager program, please click on "Operations" button and then click on "Bluetooth Control" button and tick "on". The features and functionalities performed with Bluetooth module are indicated in AManager IOM for PDA (BIFCS-0029) and PC (BIFCS-0028).

Section 11: DeviceNet Certificate

EPI2 actuators family equipped with DeviceNet interface module have passed the DeviceNet Conformance Test and can be declared.

DeviceNet CONFORMANCE TESTED™

Copy of the DeviceNet certificate can be viewed at ODVA website: www.odva.org.

Section 12: Optional Kits

The OM11 kit consists of the following parts, see Figure 26.

- OM11 DeviceNet Interface module
- 3 pcs metal spacers
- 1 pc metal hexagonal spacer 15 mm
- 3 pcs metal hexagonal spacers 25 mm
- 1 plastic spacer
- 1 flat cable with connectors
- 3 screws M3x8
- 4 screws M3x10

Figure 26

This kit allows to assemble optional module OM11 over all different EPI2 models. Depending on models, only some spacers and screws has to be used. Refer to Tables 27 and 28 and Figure 27 to choose the correct mechanical parts.

Actuator model	OLD 63-125	OLD 250-2K	NEW 63-125	NEW 250-2K
Product coding chart digit X ₇ X ₈ 1-phase	UV - VU	UV - VU	LV - HV	LV - HV
Product coding chart digit X ₇ X ₈ 3-phase	31, 32, 33	31, 32, 33	3A, 3B, 3C	3A, 3B, 3C
A	1,11	11	4,8	5,8
В	2,12	12	1,11	6,9
С	3,13	13	2,12	7,10
D	14	14	15	-

Actuator model	OLD E006-E013	OLD E025-E171	NEW E006-E013	NEW E025-E171
Product coding chart digit 6 1-phase	0 - 4	0 - 4	L-H	L-H
Product coding chart digit 6 3-phase	1, 2, 3	1, 2, 3	A, B, C	A, B, C
А	1,11	11	4,8	5,8
В	2,12	12	1,11	6,9
С	3,13	13	2,12	7,10
D	14	14	15	-

Table 28.EPI2 cross reference table US market

World Area Configuration Centers (WACC) offer sales support, service, inventory and commissioning to our global customers. Choose the WACC or sales office nearest you:

NORTH & SOUTH AMERICA

MIDDLE EAST & AFRICA

19200 Northwest Freeway Houston TX 77065 USA T +1 281 477 4100

Av. Hollingsworth 325 Iporanga Sorocaba SP 18087-105 Brazil T +55 15 3413 8888

ASIA PACIFIC

No. 9 Gul Road #01-02 Singapore 629361 T +65 6777 8211

No. 1 Lai Yuan Road Wuqing Development Area Tianjin 301700 P. R. China T +86 22 8212 3300 P. O. Box 17033 Jebel Ali Free Zone Dubai T +971 4 811 8100

P. O. Box 10305 Jubail 31961 Saudi Arabia T +966 3 340 8650

24 Angus Crescent Longmeadow Business Estate East P.O. Box 6908 Greenstone 1616 Modderfontein Extension 5 South Africa T +27 11 451 3700

EUROPE

Holland Fasor 6 Székesfehérvár 8000 Hungary T +36 22 53 09 50

Strada Biffi 165 29017 Fiorenzuola d'Arda (PC) Italy T +39 0523 944 411

For complete list of sales and manufacturing sites, please visit www.emerson.com/actuationtechnologieslocations or contact us at info.actuationtechnologies@emerson.com

www.emerson.com

VCIOM-02377-EN ©2022 Emerson. All rights reserved.

The Emerson logo is a trademark and service mark of Emerson Electric Co. KeystoneTM is a mark of one of the Emerson family of companies. All other marks are property of their respective owners.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

